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An approximate method of analytic solution of certain nonlinear prob- 
lems is presented, The applicability of the method is demonstrated 
with the example of the solution of the problem concerning the motion 
of a heavy particle,of variable mass, projected at an angle to the 
horizon. Another example contains the analytic solution of the basic 
problem of exterior ballistics of a projectile in the most general 
formulation. 

1. Approximate method of integration of certain nonlinear 
differential equations. Gt a system of ordinary nonlinear diffe- 
rential equations be given in the form 

(1.1) 

dY*-1 
- = fTz-1 @l Y11 Y,) dx 

d%a 
- = fn MY Ylf dx 

Ihe solution of the system has to satisfy the initial conditions 

5 = SF@, 

in a certain closed 

together with their 

Yi = Y&7 Y; = Y;, (i = 1, *. .) n) (1.2) 

region D of variables XI yj, where fi are continuous, 

second derivatives. 
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If the quadratures of both sides of the last n - 1 equations are 

taken, and the found values y,,, Y,,~, y+*, . ..) yz, which satisfy the 

conditions (1.21, are substituted into each preceding equation of the 

system (1.11, then we find (from the first equation of this system which 

we shall call the fundamental one) for y1 a functional relationship of 

the form 
dyl - -F [yJ = 0 
dx (1.3) 

where F[y I designates a known function of the integral operators of yl. 

We shall how how th e solution of equation (1.3) may be found by using a 

certain modification of Chaplygin algorithm for an ordinary differential 

equation [ 1,2 1. 

Let 4 [yl] be the left-hand side of equation (1.3). Assume that the 

functions yu_ and yo+ are found in the region D, such that 

YO- k%) = YO+kJ = YlO, @ [?/,-I < 0 .< 0 h/,+1 (z>zo) ('1.4) 

We introduce Ay_ and Ay+ through the equations 

y1 = y,-- Q-7 YI = y,+- AY+ (I .5) 

lhen, from (1.31, we obtain the equations 

q + F I~11 -F [Y,-I - @ [Y,-I = 0 (l-6) 

w + F 1~11 - F iy,+l - @ [y,+l = 0 

Let us consider the difference F[ ylI - Fry&I. A finite increment 

of the functional operator may be represented in the form of a series of 

its variation with suitable factors. For example, limiting ourselves to 

just two terms of the series, we may write 

Here 

F [z/J- F [y,_l = ~FY,-Y, + $ zaFyoyo- (1.7) 

6Fyo_ y,+ = - &Fly,- + E (Y, - Y,-)I lc_o yo+?yo_ 

~2F~o~o- = -& F [Y,- + E (YO - Y,-)I jcso ( yo+A:-yo_ ) 

In addition to this, the differential F[yl] - F[yo+l may be also re- 

presented in the form 

F [YII 
F [‘o+l -F [‘o-l 

--FIY,l =- yo+_y_ 
Ay 

+ 
_ p 

(1.8) 
0 
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Let the functions yO+ and yo-, which we shall call the supporting ones, 

be already so close to each other, that for any yO in the interval 

[Y ,,+, y+] and arbitrary 1: > x0, the inequalities are fulfilled 

$62FY,YO_ = a >jO, P>O (1.9) 

Substituting the increments (1.7) and (1.8) into (1.61, we rewrite 
them in the form 

d (AY-1 ___ - p_~y_ - 0 &,_I = - a, d @Y+) 
dx 

7 -P +AY+ - 0 [Y,+l = fJ (1.10) 

where 

P- = -&-F [Y,_ + E (Y, - Y,-)I )._-. yo+ 1 yo_ y P+ = ’ [‘;;I ;!Yo-l 

If in the expression (1.9) the sign of the inequalities is opposite, 

the p+ and p_ in (1.10) have to be interchanged. 

Let us find the integrals of the linear differential equations: 

d tAyo-) - - p_Ayo_- CD [y,-1 = 0, dx 
d tAyo+) 
___ - P+AY, dx 

-@[y,+] = 0 (1.11) 

which vanish for 1: = x0. 

They will be: 

Ayo_=rxp([ p_dz;j 

& 

Ay,+=exp([ p+$!; 

xe 

@ IYo+lex+_l P+d+r (1.12) 
x. x9 XI 

Substitution of zero in place of Ay_ and Ay, into the left-hand 

sides of equations (1.11) yields a result which corresponds to inequali- 

ties (1.41, wherefrom, according to Chaplygin's theorem [ 1 I, it follows 

Ay,- < 0 < AY,+ (1.13) 

Replacement of Ay, and Aye+ in the left-hand sides of equations 

(1.11) by Ay_and Ay+ using (1.10) gives the result - a < 0 and p > 0, 
respectively, wherefrom, on the basis of this same theorem, follow the 

inequalities 

AY_<AY,, AY, > AY,, (1.14) 

If the new approximations are designated by 

yl- = yo- - A yo-, Yl, = Y,+ - AY, (1.15) 
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then, from (1.51, (1.13) and (1.141, the inequalities follok 

Y,- < Y,-< Y1-s Yxt<Yy,t 

The indicated method of iteration permits the finding of the solution 
of equation (1.3). The values of y2, . . . . yn are then determined by 

quadratures. 

Fixing attention on the solution in first approximation, it is con- 

venient, in practical application of the method, to choose one of the 

supporting functions in the form of the integral of the fundamental diffe- 

rential equation of the system (1.11, in which the right-hand side is 

altered only slightly: 
cly," 
- =/I* (x7 !/Cl*) dx 

but such that its solution is determined analytically. In choosing this 

first supporting function, the main factors of the concrete problem 

should be taken into account. 

As a second supporting function it is possible to take the yOg - func- 

tion, which is determined by the method of successive approximations from: 

s 

y,* = Pl;l&)*] dJJ ( 1 . ~16) 

Then, instead of p+, we find p: 

IJ = 6‘ [?/":': ’ I- fi Iv,*1 

Y”” -yo* 

and the first approximation to the solution of 

the form: 
X .'E 

(1.17) 

equation (1.3) will be in 

where 

d!, * 
@[y,'l = -$--- F[go'l (1.19) 

'Ihe examples given below (Sections 2 and 3) show that the first 

approximations yield already a high degree of accuracy. 

2. Generalization of the problem of K.E. Tsiolkovskii for 
the case of curvilinear motion. Let a heavy material particle, 
whose mass changes in accordance,with some law M= &f(t), be prqjected at 

an angle 8, to the horizon with velocity uO. 

We shall assume that the gravity field is homogeneous and that the 

earth is plane and at rest, together with the atmosphere. During motion 

the particle is subjected to the force of gravity G, to the drag Q and 
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to a force R, which is determined by the separation and association of 

mass particles. let the direction of force R coincide with the direction 

of the tangent to the trajectory; its magnitude may depend on the eleva- 

tion y, the speed of flight u, and the time of motion t of the particle. 

are known functions. For brevity we write 

G --_= 
M g’ -j=q(t,y,v) -$=r(t,y,v) (2.1) 

'lhe equations of motion [3 I of the particle are of the form 

M;= R-GsinB-Q, A&B =-GcosB (2.2) 

~=vcose, i = vsin6 (2.3) 

Substituting the variable 8 by a new variable d, by means of the 

relation 

'p 4nt#$- f;) (24 

and using the notations (2.11, the system of equations (2.21 and (2.3) 
is reduced to the form 

?; = r (t, y, v) -g th 9, -q (t, y, v) 

‘p=-$, &., 
ch @ i = vthcp (2.5) 

lhe integrkion of equations (2.5) will be carried out using the method 

described in the preceding section. From the last three equations we find 

cp = Qo - g \ J!.- , 
t 

z=zo+ s $4 y = y, + \ u th p dt (2.6) 
t. 1, 1, 

Ify from (2.6) is substituted into the first equation (2.5) and then 

the value of $J = # Iul, also found from (2.61, is substituted as well, 

then we find for t, a functional equation of the type (1.3): 
dv -- 
dt 

-F [VI = 0, F 1~1 = r [VI- 6 th 9 [VI - q [vl (2.7) 

Let us study the case when Q = 0 and R = -uMOf, that is the atmo- 
sphere is absent; V is the relative velocity of rejected particles [3 1, 

Then the system of equations of motion (2.5) and expression (2.7) takes 

the form: 

j, = vthcp(2.8) 

. 
F(v] = -+,thrp[vj 

let us choose as supporting functions the integrals of the equ;.ions 
. . 

;_ = -Vf-gthp,, ;+= -I'+--gthq,_ 
( 5 

dt \ 
(P,p = PO - g <I) 

t. 
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where tk is the time at the end of the active part. 

Thus, the selected supporting functions v_ and v+ correspond to the 
motion of the particle along straight lines, inclined with respect to the 
horizon at an angle 8, (initial angle of inclination of the velocity vect 
and angle 8k (angle which is smaller than the angle of inclination of the 
velocity vector at the end of the active part), respectively. They are 
determined by the well-known formulas of Tsiolkovskii [ 3 1 . Then 

Q Iv-1 = - g {th QO - th ‘p iv_11 < 0, 

@ [v+l = g @h b+l - th cp,> > 0 

that is, inequalities (1.4) are fulfilled. 

Condition (1.9) is verified by the calculation of 

lPF -I 2g2 
dca ,8=-O 

=ch”9 

t. 1, 

The first approximations are determined by formulas (1.15) and (1.12). 
Thus 

2’1_ = v_ - exp (\ p-d,)\ @ Iv-1 exp (-- 1 p- dt) & 
t. t* 1. 

here 
I 

a 

p-. = - (u+ -- u-; ch”cp [?I_] t. s F dt 

th ‘P [v+l - th ‘P Iv-1 
p+ = - .(th ‘pU - th (eke) (I - to) 

The solution may be taken as one-half the SWII of these approximations: 

v* = % (v 
Y 

+ vl_ ), whereby th e error will not be larger than one-half 
their dif erence y = % (vi+ - vi_ 1. Subsequently, q5, x and y are deter- 
mined by formulas (2.6). 

Let us consider a concrete example. Let us assume that the mass of the 

particle changes in accordance with the linear law f = 1 - /? t, and the 
constant parameters and the initial conditions are as follows: 

/3 = 0.01 set-I, V = 2290 m sec’l, 

tO - x0 = yO = 0. uO = 100 m set -I 8 750 , o = 
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The results of the calculations are given in Table 1 and are illus- 
trated in Fig. 1. 

Fig. 1. 

TABLE 1 

0 
5 :E 

:s %Z 
20 423 L E 

632 
891 

:?I 
1214 
1632 

70 2207 

- 

L 1 I - 

- 

PO0 

192 
290 
398 
5f1 

;; 

1696 
2516 

“1, -1 
I tsec 

- 

L I I - 

- 

:z 
250 
341 

g 

1301 
1751 
2361 

- 

I 

- 

951 950 

:% E 
2368 2365 

I 

As may be seen from Table 1, the one-half difference of first appro- 
ximations, the upper and the lower, does not exceed 0.2 per cent. 

Since the first approximations from above and below are very close* 
it is justified to limit one’s attention in the solution of this problem 
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to first approximation from one side only. Formulas (1.17) to (1.19) 
will be: 

t 

v+=vo--lnf--gthcPk_(~--o)t (P+=‘po-g y+ s dt 

t* 

thcp,-ttbp_ 
P=-((thcpo- thcpk_)(t--o) “*- = % ($) 

(2-9) 

t t 

v,=v_-gexp (th ‘P_ - th cpO) exp 

to 1. i. 

Formulas (2.9) were also verified by means of comparison with the 
exact solution of equations (2.8), which can be obtained only for the 
case of the indicated Iaw of loss of mass [4 I. The calculations show 
that the difference between the exact and the approximate solutions in 
this case does not exceed 1 per cent. 

3. ‘he fundamental problem of exterior ballistics of a 
projectile. ‘The known analytic solutions of this problem were based on 
simplifications of either the character of the law of resistance, the 
hypothesis on the structure of the atmosphere or the character of pro- 
j ectile motion [ 5 I . ‘Ih e solution of the problem under general conditions 
in the paper by Popov [6 3 is found in the form of series in powers of an 
artificially introduced parameter. It was assumed thereby that the density 

of the atmosphere is approximated by an exponential or a rational function 

of the elevation. V.S. Pugachev suggested a solution, obtained by the 

method of Poincare, in the form of a series of powers of the ballistic 
toe f ficient . 

We shall show how the analytic solution of the problem regarding the 
motion of the mass center of the projectile may be found in a general 
formulation*, using the procedure expounded above. 

If the vector equation of the motion of the mass center of the pro- 

jectile (with zero angle of attack) is projected on the horiztontal di- 

rection and on the direction normal to the trajectory, then we obtain 

. . 
$,.r; -q cos 8, vfi = -gcos~ (3.1) 

where q = q(y,u) is the acceleration due to the force of air resistance. 

* As is usual we shall assume that the earth is plane and at rest together 
with the atmosphere. and that the gravitational field is homogeneous. 
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Using two kinematic relations 
&=UCOS~, jr=vsinO (3.2) 

we replace the variables x and 0 by new variables IV and + by means of the 
relations 

u?=gln& ‘p= 1ntg(q+$) (3.3) 

and go over in equations (3.1) and (3.2) to the argument 4. Then we ob- 
tain the equations of motion in the form 

dw 
T = 9, 

dx 79 

dp, =-g’ 

For q = kv2 the first two relations in (3.4) give the equation 

(3.4) 

(3.5) 

with separable variables. ‘Ehe integration [ 7 1 of this equation leads to 
the formula which determined the velocity of the particle: 

v=chcp 
( (3.6) 

The duration of motion and the coordinates of the particle x and y 
are determined from the last three equations of (3.4): (3.7 

Q* Q* 

‘Ihe solution (3.6) and (3.7), with the aid 
k, for example: 

,=,.-j-t ~2tb~d~ 
‘PO 

of a suitable coefficient 

where 
k = cH(ycp)~4.7440-4cxPcp (3.8) 

(3.9) 

yields a supporting function for the solution of the problem concerning 
projectile motion in non-homogeneous atmosphere. 

In the general case the acceleration of the forces of the air-drag is 
expressed as : 

9 (.?I, v) = cH, (Y) vG (h) (3810) 

Then from the last equation (3.7) and the first two of (3.41, follows 
the functional equation of the type (1.3): 

dw - - F [WI= 0 
dq 

where (3.11) 

F [WI = cH, [v] vG [v], v = exp (+) ch p, , H, [a] = H,(y), G [VI = G (kc) 
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Let us find the analytical solution of the fundamental problem of 
exterior ballistics in the form of ~pxox~mat~ou (1.18), selecting as the 
supporting function 

V* zU'=glC--- 
chcp 

where at* is determined by firnnufas 13*6) and (3.8). 

lhen the formulas (la171 to (1.19) are of the form: 

1 

II* = ch p 
1 
~,~(~sh290S.'Po--~h21p--~}-i 

9, 

y'=y,---p\V'Wqf+ (3.12) 

% 

Q* = cH&*)o*G(~(Y*) z?), P= $-n(X(y*)v*) 

u= Axp{$CXP[{ p dads (if-kPf exp (-i p dip)dqi\ 
vo CD [PO 

‘llw value of p is determined as follows. Since 

vhere R(V, a) is the characteristic of air resistance: 

d In F (v, a) 
n(2), a) = - dlnv 

and represents a well-known ballistic function. 

Let us consider a concrete example. Let 

vO 
= 562 m see-l, 8, = 4oQ, c = 0.366, to = x0 = y. c 0 

The trajectory of the projectile calculated by the suggested method 
(3.12) and (3.7) is shown in Pig. 2 (Table 2). where for purposes of 
comparison circles indicate the results obtained by the method of 
nnmerfcal integration, 
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Fig. 2. 

TABLE 2 

Analytical Solution 

Qrn 
I I 

xrn Urn ‘pm xrn Urn QS xm 

0.763 
0,713 lZ50 8:s 

0.463 
0.413 

0.663 1850 1456 0.313 
0.613 2500 1890 0.263 
0 563 3050 2240 0.213 
0.513 3530 2515 0.013 

rm 
I 

urn 

0 
500 4:2 

1000 809 
1500 1189 

22% 
1548 
1884 

3000 2195 

- 

- 

- 

3970 2744 
4380 2920 
5130 3190 
5490 3310 
5830 3460 
7130 3550 

Numerical Solution 

Xm / urn ( rm 1 urn 

3500 

%z 

%z 
6000 
6500 

70@3 
7500 
8000 
8500 

zz 
10000 

3525 
3523 
3479 
3392 
3260 
3083 
2859 

Urn 

3425 
3110 
2520 
1655 
468 

--1010 

10500 2585 
11000 2261 
11500 1883 
12060 1450 
12500 959 
13000 405 

The calculations indicate that the difference in the determination of 
the elements of the trajectory is less than 1%. Thus, the analytical 
solution of the problem gives a result which practically coincides with 
the one obtained by the method of numerical integration of the equations 
of exterior ballistics of a projectile. 



492 L.U. Vorob’cv 

BIBLIOGRAPHY 

1. Chaplygin, S.A., Novyi uctod priblixhcnnogo integrirouaniia diffc- 

rentsial’nykh uravncnii (A New Method of Approxiuate Integration 

of Differential Equations). Gostekhizdat, 1950. 

2. Vorob’ ev, L. Y. , Primenimost’ metoda piiblizhennogo integrirovaniia 
S.A. Chaplygina k nekotoromu klassu obyknovennykh nelineinykh 
differentsialnykh uravnenii vtorogo poriadka (Applicability of 
S.A. Chaplygin’s method of approximate integration to a certain 

class of ordinary nonlinear differential equations of second order) 
Usp. uat. nauk Vol. 11, No. 1, 1956. 

3. Kosmodem’ ianskii, A.A., Lektsii po mekhanike tel peremennoi massy 
(Lectures on mechanics of variable mass). Uch. zap. Mask. Gos. 

Univ. Vol. 4, No. 1. 54. 1951. 

4. Moyal. J. E. , Rocket motion in a gravitational field. &it. Interplan. 

Sot. Vol. 5, No. 3, 1948. 

5. Okunev, B. N., Osnovy ballistiki (Fundarentals of Ballistics). 

Voenizdat. 1943. 

6. Popoff, Kyrill, Die Hauptprobleuc der ausseren Ballistik iu Lichte 

der uodernen Matheratik. Leipzig, 1954. 

7. Nekrasov, A. I., Kurs teorcticheskoi uekhaniki (A Course in Theore- 

t ical Mechanics). Vol. 2, Gostekhizdat, 1953. 

Translated by G.H. 


